كلية الحاسبات والذكاء الإصطناعي

Probability and Statistics

Lecture 03

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence
Benha University
Spring 2023

مواعيد أول 8 محاضرات

مواعيد أول 8 محاضرات لمـادة (الاحتمـالات و الإحصاء)

ملاحظات	الوقت	المكان	التاريخ	اليوم	\bigcirc
تم در اسة المحاضرة في مو عدها	11:15	مدرج 3	22	الأربعاء	1
تم در اسة المحاضرة في مو	11:15 ص-	مدرج 3	01	الأربعاء	2
تم در اسة المحاضرة في	11:15 ص-5:0	مدرج 3	08 مارس 2023	الأربعاء	3
بدلا من محاضرة (الأربعاء 15 فبراير 2023)	5:00	أوناين	11 مارس 2023 مارس	السبت	4
بدلا من محاضرة (الأربعاء 15 مارس (1)	5:00	أونلاين	17	الجمعة	5
()يشمل) Quiz (1)	10:30 ص-2:00	مدرج 3	22	الأربعاء	6
بدلا من (1)	2:00 م	أونلاين	25 مارس 2023	اللسبت	7
	10:30 ص	مدرج 3	205 2023	الأربعاء	8
	\ldots
	\ldots	\ldots	\ldots	\ldots	\ldots

Chapter 1: Probability

- Sample Space.
- Events.
- Counting Techniques.
- Probability of an Event.
- Additive Rules.
- Conditional Probability.
- Independence, and the Product Rule.
- Bayes' Rule.

Probability of an Event

Axioms of Probability:

S Is a sample space, A is an event $A \subseteq S$
$P(S)=1$
$P(\varnothing)=0$
$0 \leq P(A) \leq 1$
$P\left(A^{\prime}\right)=1-P(A)$

Additive Rules (1/13)

If A and B are two events, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Additive Rules (2/13)

كلية الحاسبات والذكاء الإصطناعي

For three events A, B, and C,

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C) .
\end{aligned}
$$

Additive Rules (3/13)

If A and B are mutually exclusive, then

$$
P(A \cup B)=P(A)+P(B) .
$$

Additive Rules (4/13)

كلية الحاسبات والذكاء الإصطناعي

If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive, then $P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)$.

Additive Rules (5/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:

1) $P\left(A^{\prime}\right)$
2) $P(A \cup B)$
3) $\quad P\left(A^{\prime} \cap B\right)$
4) $P\left[(A \cup B)^{\prime}\right]$

Additive Rules (6/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:

1) $P\left(A^{\prime}\right)=1-P(A)=1-0.3=0.7$
2) $P(A \cup B)=0.3+0.2-0.1=0.4$

Additive Rules (7/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
3) $P\left(A^{\prime} \cap B\right)$

Additive Rules (7/13)

Example4:

If $P(A)=0.3, \quad P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
3) $P\left(A^{\prime} \cap B\right)$

Additive Rules (7/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
3) $P\left(A^{\prime} \cap B\right)$

Additive Rules (7/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
3) $P\left(A^{\prime} \cap B\right)$
$=P(B)-P(A \cap B)=0.2-0.1$
$=0.1$

Additive Rules (8/13)

كلية الحاسبات والذكاء الإصطناعي

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
4) $P\left[(A \cup B)^{\prime}\right]$

Additive Rules (8/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
4) $P\left[(A \cup B)^{\prime}\right]=P\left(A^{\prime} \cap B^{\prime}\right)$

Additive Rules (8/13)

Example4:

If $P(A)=0.3, P(B)=0.2, P(A \cap B)=0.1$ determine the following probabilities:
4) $P\left[(A \cup B)^{\prime}\right]=P\left(A^{\prime} \cap B^{\prime}\right)$

$$
=1-P(A \cup B)=1-0.4=0.6
$$

Additive Rules (9/13)

كلية الحاسبات والذكاء الإصطناعي

Example5:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

Additive Rules (10/13)

Example5:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

Solution:

Let A be the event that 7 occurs and B the event that 11 comes up.

$$
\begin{aligned}
& S=\{11,12,13,14,15,16,21,22,23,24,25,26, \\
& 31,32,33,34,35,36,41,42,43,44,45,46,51, \\
& 52,53,54,55,56,61,62,63,64,65,66\}
\end{aligned}
$$

Additive Rules (11/13)

Example5:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

Solution:

Let A be the event that 7 occurs and B the event that 11 comes up.

$$
P(A)=\frac{6}{36}
$$

$$
\begin{aligned}
& S=\{11,12,13,14,15,16,21,22,23,24,25,26 \\
& 31,32,33,34,35,36,41,42,43,44,45,46,51 \\
& 52,53,54,55,56,61,62,63,64,65,66\}
\end{aligned}
$$

Additive Rules (12/13)

Example5:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

Solution:

Let A be the event that 7 occurs and B the event that 11 comes up.

$$
P(B)=\frac{2}{36} \quad \begin{aligned}
& S=\{11,12,13,14,15,16,21,22,23,24,25,26 \\
& 31,32,33,34,35,36,41,42,43,44,45,46,51 \\
& 52,53,54,55,56,61,62,63,64,65,66\}
\end{aligned}
$$

Additive Rules (13/13)

Example5:

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

Solution:

The probability of getting a total of 7 or $11=P(A \cup B)$
The events A and B are mutually exclusive, since a total of 7 and 11 cannot both occur on the same toss. Therefore,
$P(A \cup B)=P(A)+P(B)=\frac{6}{36}+\frac{2}{36}=\frac{8}{36}=\frac{2}{9}$

Conditional Probability (1/31)

Introduction (1/2):

Sometimes probabilities need to be reevaluated as additional information becomes available. The probability of an event B under the knowledge that the outcome will be in event A is denoted as

$$
P(B \mid A)
$$

and this is called the conditional probability of B given A.

Conditional Probability (1/31)

Introduction (2/2):

The conditional probability of B, given A, denoted by $P(B \mid A)$, is defined by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \quad \text { provided } P(A)>0
$$

Conditional Probability (1/31)

Introduction (2/2):

The conditional probability of B, given A, denoted by $P(B \mid A)$, is defined by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)},
$$

$$
\text { provided } P(A)>0
$$

Conditional Probability (2/31)

Example1:

As an additional illustration, suppose that our sample space S is the population of adults in a small town who have completed the requirements for a college degree. We shall categorize them according to gender and employment status. The data are given in the following.

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (3/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (3/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

$$
P(M \mid E)
$$

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (3/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

$$
P(M \mid E)=\frac{P(M \cap E)}{P(E)}
$$

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (4/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

$$
P(M \cap E)=\frac{460}{900}
$$

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (5/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

$$
P(E)=\frac{600}{900}
$$

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (5/31)

Example1:

One of these individuals is to be selected at random. What is the probability that he is a male and given that he is employed?

$$
P(M \mid E)=\frac{460 / 900}{600 / 900}=\frac{460}{600}
$$

Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability (6/31)

Example2:

Consider an industrial process in the textile industry in which strips of a particular type of cloth are being produced. These strips can be defective in two ways, length and nature of texture. It is known from historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?

Conditional Probability (7/31)

Example2:

Consider an industrial process in the textile industry in which strips of a nart: 0 ar type of cloth are being produced. These $\mathrm{P}(\mathrm{L})=0.1$ defective in two ways, length and nature of texture. It is known from historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?

Conditional Probability (7/31)

Example2:

Consider an industrial process in the textile industry in which 0.1 f a particular type of cloth are being $\operatorname{pr} P(\mathrm{~L})=0.1$ rese strin $\mathrm{P}(\mathrm{T})=0.05$ fective in two ways, length and nature of $P(T)$. It is known from historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?

Conditional Probability (7/31)

Example2:

Consider an industrial process in the textile industry in which 0.1 f a particular type of cloth are being pr $\mathrm{P}(\mathrm{L})=0.1$ rese strina $\mathrm{P}(\mathrm{T})=0.05$ fective in T$)=0.008$ ngth and nature of $P(T)=$ it is $P(L \cap T)$ historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?

Conditional Probability (7/31)

Example2:

Consider an industrial process in the textile industry in which 0.1 f a particular type of cloth are being pr $P(L)=0.1$ nese strina $\quad 0.05$ fective in t 1$)=0.008$ ngth and nature of $P(T)$. It is $P(L \cap T)=m$ historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?

$$
P(T \mid L)=0.008 / 0.1=0.08
$$

Conditional Probability (8/31)

كلية الحاسبات والذكاء الإصطناعي

Example3:

A dice is rolled twice. What is the probability that the sum equal 10 , if you know that the $1^{\text {st }}$ element equal 6 ?

Conditional Probability (9/31)

Example3:

A dice is rolled twice. What is the probability that the sum equal 10 , if you know that the $1^{\text {st }}$ element equal 6 ?

Solution: $A=\{46,55,64\}, B=\{61,62,63,64,65,66\}$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Conditional Probability (9/31)

Example3:

A dice is rolled twice. What is the probability that the sum equal 10 , if you know that the $1^{\text {st }}$ element equal 6 ?

Solution: $A=\{46,55,64\}, B=\{61,62,63,64,65,66\}$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$$
\begin{aligned}
& P(A)=3 / 36 \\
& P(B)=6 / 36 \\
& P(A \cap B)=1 / 36
\end{aligned}
$$

$(A \cap B)=\{64\}$

Conditional Probability (9/31)

Example3:

A dice is rolled twice. What is the probability that the sum equal 10 , if you know that the $1^{\text {st }}$ element equal 6 ?

Solution: $A=\{46,55,64\}, B=\{61,62,63,64,65,66\}$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 36}{6 / 36}=1 / 6
$$

$$
\begin{aligned}
& P(A)=3 / 36 \\
& P(B)=6 / 36 \\
& P(A \cap B)=1 / 36
\end{aligned}
$$

$(A \cap B)=\{64\}$

Conditional Probability (10/31)

Disjoint (or mutually exclusive):
S is a sample space, A, B are two events $A, B \subseteq S$ and A, B Disjoint or mutually exclusive
$\therefore P(A \cap B)=0$
$\therefore P(A \cup B)=P(A)+P(B)$
$\therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{P(B)}=0$

Conditional Probability (11/31)

Independence:

S is a sample space, A, B are two events $A, B \subseteq S$ and A, B are independent
$\therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) * P(B)}{P(B)}=P(A)$
$\therefore P(A \cap B)=P(A) * P(B)$
$\therefore P(A \cup B)=P(A)+P(B)-P(A) * P(B)$

Conditional Probability (12/31)

Example4:

- If $P(A)=0.2, P(B)=0.3$ determine the following probabilities:

If A, and B are disjoint (mutually exclusive)

1) $P(A \cap B)$
2) $P(A \cup B)$
3) $P(A \mid B)$

Conditional Probability (13/31)

Example4:

- If $P(A)=0.2, P(B)=0.3$ determine the following probabilities:
If A, and B are disjoint (mutually exclusive)
Solution:
$P(A \cap B)=0$
$P(A \cup B)=P(A)+P(B)=0.2+0.3=0.5$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{P(B)}=0$

Conditional Probability (14/31)

Example5:

- If $P(A)=0.2, P(B)=0.3$ determine the following probabilities:

If A, and B are independent

1) $P(A \cap B)$
2) $P(A \cup B)$
3) $P(A \mid B)$

Conditional Probability (15/31)

Example5:

- If $P(A)=0.2, P(B)=0.3$ determine the following probabilities:
If A, and B are independent
Solution:
$P(A \cap B)=P(A) * P(B)=0.2 * 03=0.06$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5-0.06=0.44$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) * P(B)}{P(B)}=P(A)=0.2$

Conditional Probability (16/31)

Example6:

The following circuit operates only if there is a path of functional devices from left to right. The probability that each device functions is shown on the graph. Assume that devices fail independently. What is the probability that the circuit operates?

Conditional Probability (17/31)

Example6:

The following circuit operates only if there is a path of functional devices from left to right. The probability that each device functions is shown on the graph. Assume that devices fail independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices operate, respectively.
$P(L \cap R)=P(L) P(R)=0.80(0.90)=0.72$

Conditional Probability (18/31)

Example7:

The following circuit operates only if there is a path of functional devices from left to right. The probability that each device functions is shown on the graph. Assume that devices fail independently. What is the probability that the circuit operates?

Conditional Probability (19/31)

Example7:

What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom devices operate, respectively.

$$
\begin{aligned}
P(T \cup B) & =P(T)+P(B)-P(T) P(B) \\
& =0.95+0.90-(0.95)(0.90)=0.995
\end{aligned}
$$

Conditional Probability (20/31)

Example7:

Another Solution

What is the probability that the circuit operates?

$$
\begin{aligned}
P(T \cup B) & =1-P(T \cup B)^{\prime} \\
& =1-P\left(T^{\prime} \cap B^{\prime}\right)
\end{aligned}=1-P\left(T^{\prime}\right) P\left(B^{\prime}\right) \quad 1-(0.05)(0.10)=0.995
$$

Conditional Probability (21/31)

Example8:

The following circuit operates only if there is a path of functional devices from left to right. The probability that each device functions is shown on the graph. Assume that devices fail independently. What is the probability that the circuit operates?

Conditional Probability (22/31)

كلية الحاسبات والذكاء الإصطناعي

Example8:

 $$
=1-(0.10)(0.10)(0.10)=0.999
$$

Conditional Probability (23/31)

Conditional Probability (24/31)

كلية الحاسبات والذكاء الإصطناعي

Example8:

$=(0.999)(0.9975)(0.99)=0.9865$

Conditional Probability (25/31)

كلية الحاسبات والذكاء الإصطناعي

Multiplication Rule:

$$
\begin{array}{ll}
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, & \text { for } P(B)>0 \\
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, & \text { for } P(A)>0
\end{array}
$$

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Conditional Probability (26/31)

Example9:

One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?

Conditional Probability (27/31)

Example9:

One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black? Solution:
B_{1} : Black from bag\#1
W_{1} : White from bag\#1
B_{2} : Black from bag\#2
W_{2} : White from bag\#2

Bag\#1

Bag\#2

Conditional Probability (27/31)

Example9: B_{1} and B_{2} or W_{1} and B_{2}

One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black? Solution:
B_{1} : Black from bag\#1
W_{1} : White from bag\#1
B_{2} : Black from bag\#2
W_{2} : White from bag\#2

Bag\#2

Conditional Probability (28/31)

Example9:

B_{1} and B_{2} or W_{1} and B_{2}

$$
P\left(B_{1} \cap B_{2}\right)=P\left(B_{2} \mid B_{1}\right) P\left(B_{1}\right)=\left(\frac{6}{9}\right)\left(\frac{3}{7}\right)
$$

Bag\#1

Bag\#2

Conditional Probability (29/31)

Example9:

B_{1} and B_{2} or W_{1} and B_{2}

$$
P\left(W_{1} \cap B_{2}\right)=P\left(B_{2} \mid W_{1}\right) P\left(W_{1}\right)=\left(\frac{5}{9}\right)\left(\frac{4}{7}\right)
$$

Bag\#1

Bag\#2

Conditional Probability (30/31)

B_{1} and B_{2} or W_{1} and B_{2}

Disjoint
$P\left(B_{1} \cap B_{2}\right)=P\left(B_{2} \mid B_{1}\right) P\left(B_{1}\right)=\left(\frac{6}{9}\right)\left(\frac{3}{7}\right)$
$P\left(W_{1} \cap B_{2}\right)=P\left(B_{2} \mid W_{1}\right) P\left(W_{1}\right)=\left(\frac{5}{9}\right)\left(\frac{4}{7}\right)$

What is the probability that a ball now drawn from the second bag is black $=\left(\frac{6}{9}\right)\left(\frac{3}{7}\right)+\left(\frac{5}{9}\right)\left(\frac{4}{7}\right)=\frac{38}{63}$

Conditional Probability (31/31)

Example9:

B_{1} and B_{2} or W_{1} and B_{2}

Disjoint

Total Probability Rule (1/10)

Total Probability Rule:

$$
\begin{aligned}
P(A) & =P(E \cap A) \cup P\left(E^{\prime} \cap A\right) \\
& =P(E \cap A)+P\left(E^{\prime} \cap A\right) \\
& =P(A \mid E) P(E)+P\left(A \mid E^{\prime}\right) P\left(E^{\prime}\right)
\end{aligned}
$$

Total Probability Rule (2/10)

Example10:

Consider the information about contamination in the following table.

$$
\begin{aligned}
& P(F \mid H)=0.1 \\
& P\left(F \mid H^{\prime}\right)=0.005 \\
& P(H)=0.2 \\
& P\left(H^{\prime}\right)=0.8 \\
& P(F) ?
\end{aligned}
$$

Let F denote the event that the product fails, and let H denote the event that the chip is exposed to high levels of contamination.

Total Probability Rule (3/10)

Example10:

Consider the information about contamination in the following table.

$$
\begin{aligned}
& P(F \mid H)=0.1 \\
& P\left(F \mid H^{\prime}\right)=0.005 \\
& P(H)=0.2 \\
& P\left(H^{\prime}\right)=0.8 \\
& P(F) ?
\end{aligned}
$$

$$
\begin{aligned}
P(F) & =P(F \mid H) P(H)+P\left(F \mid H^{\prime}\right) P\left(H^{\prime}\right) \\
& =(0.1)(0.2)+(0.005)(0.8)=0.024
\end{aligned}
$$

Total Probability Rule (4/10)

Total Probability Rule (Multiple Events):

$$
\begin{gathered}
B=\left(B \cap E_{1}\right) \cup\left(B \cap E_{2}\right) \cup\left(B \cap E_{3}\right) \cup\left(B \cap E_{4}\right) \\
P(B)=P\left(B \cap E_{1}\right)+P\left(B \cap E_{2}\right)+P\left(B \cap E_{3}\right)+P\left(B \cap E_{4}\right)
\end{gathered}
$$

Total Probability Rule (5/10)

Example11:

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25%, respectively, of the products. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Total Probability Rule (5/10)

Example11:

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25%, respectively, of the products. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?
D : the product is defective. Find $P(D)$?

Total Probability Rule (6/10)

Example11: $P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.45, P\left(B_{3}\right)=0.25$

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25%, respectively, of the products. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

$$
\begin{aligned}
& P\left(D \mid B_{1}\right)=0.02 \\
& P\left(D \mid B_{2}\right)=0.03 \\
& P\left(D \mid B_{3}\right)=0.02
\end{aligned}
$$

Total Probability Rule (7/10)

كلية الحاسبات والذكاء الإصطناعي

Example11: $P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.45, P\left(B_{3}\right)=0.25$

$$
\begin{aligned}
& P\left(D \mid B_{1}\right)=0.02 \\
& P\left(D \mid B_{2}\right)=0.03 \\
& P\left(D \mid B_{3}\right)=0.02 .
\end{aligned}
$$

Applying the total probability rule, we can write
$P(D)$
$=P\left(D \mid B_{1}\right) P\left(B_{1}\right)+P\left(D \mid B_{2}\right) P\left(B_{2}\right)+P\left(D \mid B_{3}\right) P\left(B_{3}\right)$
$=0.02(0.3)+0.03(0.45)+0.02(0.25)=0.0245$

Total Probability Rule (8/10)

Example12:

Box\#1 contains 2 red balls and 3 blue balls; Box\#2 contains 5 red balls and 2 blue balls. If the selection of two boxes is equally likely, and you selected one ball, what is the probability that it is red?

Total Probability Rule (8/10)

Example12:

Box\#1 contains 2 red balls and 3 blue balls; Box\#2 contains 5 red balls and 2 blue balls. If the selection of two boxes is equally likely, and you selected one ball, what is the probability that it is red?

Total Probability Rule (9/10)

Example12:

Box\#1 contains 2 red balls and 3 blue balls; Box\#2 contains 5 red balls and 2 blue balls. If the selection of two boxes is equally likely, and you selected one ball, what is the probability that it is red?
$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue
Find $P(R)$?

Total Probability Rule (10/10)

كلية الحاسبات والذكاء الإصطناعي

Example12:

$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R :read, B:blue
$P\left(R \mid B_{1}\right)=2 / 5=0.4$
$P\left(R \mid B_{2}\right)=5 / 7=0.7143$

$$
\begin{aligned}
P(R) & =P\left(R \mid B_{1}\right) P\left(B_{1}\right)+P\left(R \mid B_{2}\right) P\left(B_{2}\right) \\
& =(0.4)(0.5)+(0.7143)(0.5)=0.55715
\end{aligned}
$$

Bayes' Rule (1/11)

كلية الحاسبات والذكاء الإصطناعي

From the definition of conditional probability,
$P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
Now, considering the second and last terms in the preceding expression, we can write

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \text { for } P(B)>0
$$

Bayes' Rule (2/11)

كلية الحاسبات والذكاء الإصطناعي

If $E_{1}, E_{2}, \ldots, E_{k}$ are k mutually exclusive and exhaustive events and B is any event,

$$
P\left(E_{1} \mid B\right)=\frac{P\left(B \mid E_{1}\right) P\left(E_{1}\right)}{P\left(B \mid E_{1}\right) P\left(E_{1}\right)+P\left(B \mid E_{2}\right) P\left(E_{2}\right)+\cdots+P\left(B \mid E_{k}\right) P\left(E_{k}\right)}
$$

for $P(B)>0$

Bayes' Rule (3/11)

Example1:

Box\#1 contains 2 red balls and 3 blue balls; Box\#2 contains 5 red balls and 2 blue balls. If the selection of two boxes is equally likely, and the selected ball was red, what is the probability that it is from Box\#1?
$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue
Find $P\left(B_{1} \mid \boldsymbol{R}\right)$?

Bayes' Rule (4/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue
$P\left(R \mid B_{1}\right)=2 / 5=0.4$
$P\left(R \mid B_{2}\right)=5 / 7=0.7143$

Bayes' Rule (5/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue
$P\left(R \mid B_{1}\right)=2 / 5=0.4$
$P\left(R \mid B_{2}\right)=5 / 7=0.7143$

$P\left(B_{1} \mid R\right)=\frac{P\left(R \mid B_{1}\right) P\left(B_{1}\right)}{P(R)}=\frac{(0.4)(0.5)}{P(R)}$

Bayes' Rule (6/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue

$P\left(R \mid B_{1}\right)=2 / 5 \quad P(R)=P\left(R \mid B_{1}\right) P\left(B_{1}\right)+P\left(R \mid B_{2}\right) P\left(B_{2}\right)$
$P\left(R \mid B_{2}\right)=5 / 7 \quad=(0.4)(0.5)+(0.7143)(0.5)=0.55715$
$P\left(B_{1} \mid R\right)=\frac{P\left(R \mid B_{1}\right) P\left(B_{1}\right)}{P(R)}=\frac{(0.4)(0.5)}{P(R)}$

Bayes' Rule (7/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

$P\left(B_{1}\right)=P\left(B_{2}\right)=0.5$
R:read, B:blue
$P\left(R \mid B_{1}\right)=2 / 5=0.4$
$P\left(R \mid B_{2}\right)=5 / 7=0.7143$
$P\left(B_{1} \mid R\right)=\frac{P\left(R \mid B_{1}\right) P\left(B_{1}\right)}{P(R)}=\frac{(0.4)(0.5)}{P(R)}=\frac{0.2}{0.55715}=0.35897$

Bayes' Rule (8/11)

Example2:

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25%, respectively, of the products. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. If a product was chosen randomly and found to be defective, what is the probability that it was made by machine B_{3} ?
D : the product is defective. Find $P\left(B_{3} \mid D\right)$?

Bayes' Rule (8/11)

Example2:
 $$
P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.45, P\left(B_{3}\right)=0.25
$$

In a certain assembly plant, three machines, B_{1}, B_{2}, and B_{3}, make $30 \%, 45 \%$, and 25%, respectively, of the products. It is known from past experience that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective. If a product was chosen randomly and found to be defective, what is the probability that it was made by machine B_{3} ?

$$
\begin{aligned}
& P\left(D \mid B_{1}\right)=0.02 \\
& P\left(D \mid B_{2}\right)=0.03 \\
& P\left(D \mid B_{3}\right)=0.02
\end{aligned}
$$

Bayes' Rule (9/11)

كلية الحاسبات والذكاء الإصطناعي

Example2:

$$
P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.45, P\left(B_{3}\right)=0.25
$$

$$
\begin{aligned}
& P\left(D \mid B_{1}\right)=0.02 \\
& P\left(D \mid B_{2}\right)=0.03 \\
& P\left(D \mid B_{3}\right)=0.02
\end{aligned}
$$

Using Bayes' rule to write
$P\left(B_{3} \mid D\right)=\frac{P\left(D \mid B_{3}\right) P\left(B_{3}\right)}{P(D)}$

Bayes' Rule (10/11)

كلية الحاسبات والذكاء الإصطناعي

Example2:

Applying the total probability rule, we can write

$$
P(D)
$$

$$
=P\left(D \mid B_{1}\right) P\left(B_{1}\right)+P\left(D \mid B_{2}\right) P\left(B_{2}\right)+P\left(D \mid B_{3}\right) P\left(B_{3}\right)
$$

$$
=0.02(0.3)+0.03(0.45)+0.02(0.25)=0.0245
$$

Using Bayes' rule to write
$P\left(B_{3} \mid D\right)=\frac{P\left(D \mid B_{3}\right) P\left(B_{3}\right)}{P(D)}$

Bayes' Rule (11/11)

كلية الحاسبات والذكاء الإصطناعي

Example2:

$$
P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.45, P\left(B_{3}\right)=0.25
$$

$$
\begin{aligned}
& P\left(D \mid B_{1}\right)=0.02 \\
& P\left(D \mid B_{2}\right)=0.03 \\
& P\left(D \mid B_{3}\right)=0.02
\end{aligned}
$$

Using Bayes' rule to write
$P\left(B_{3} \mid D\right)=\frac{P\left(D \mid B_{3}\right) P\left(B_{3}\right)}{0.0245}=\frac{(0.02)(0.25)}{0.0245}=0.2041$

Video Lectures

All Lectures: hitps://www.youtube.com/playlist?list=PLx|vc-MEDsGgWgSgkmaxESwIvDkIDI r-

Lecture \#3: https://www.youtube.com/watch?v=raEVLxzY7iEClist=PLxlvcMEDsEgWISgkmaxE5wIvDKIDI r-Ciindex=3
https://www.youtube.com/watch?v=zWDzNUTFkGs\&list=PLxlvcMEDsBgWISgkmaxE5wIvDKIDI r-Ciindex=4

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

