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محاضرات8مواعيد أول 

Probability and Statistics

(الاحتمالات و الإحصاء)محاضرات لمادة 8مواعيد أول 

ملاحظات الوقت المكان التاريخ اليوم م

تم دراسة المحاضرة في موعدها ص11:15 3مدرج  2023فبراير 22 الأربعاء 1

تم دراسة المحاضرة في موعدها ص11:15 3مدرج  2023مارس 01 الأربعاء 2

تم دراسة المحاضرة في موعدها ص11:15 3مدرج  2023مارس 08 الأربعاء 3

(2023فبراير 15الأربعاء )بدلا من محاضرة  م5:00 أونلاين 2023مارس 11 السبت 4

(2023مارس 15الأربعاء )بدلا من محاضرة  م5:00 أونلاين 2023مارس 17 الجمعة 5

Quiz (1)(يشمل أول ثلاث محاضرات) ص10:30 3مدرج  2023مارس 22 الأربعاء 6

(2023مارس 29الأربعاء )بدلا من محاضرة  م2:00 أونلاين 2023مارس 25 السبت 7

ص10:30 3مدرج  2023ابريل 05 الأربعاء 8

... ... ... ... ...

... ... ... ... ...



• Sample Space.

• Events.

• Counting Techniques.

• Probability of an Event.

• Additive Rules.

• Conditional Probability. 

• Independence, and the Product Rule.

• Bayes’ Rule.
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Chapter 1: Probability

Probability and Statistics
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Probability of an Event

Probability and Statistics

Axioms of Probability:

𝑆 Is a sample space, 𝐴 is an event

𝐴 ⊆ 𝑆

𝑷 𝑺 = 𝟏

𝑷 ∅ = 𝟎

𝟎 ≤ 𝑷 𝑨 ≤ 𝟏

𝑷 𝑨′ = 𝟏 − 𝑷(𝑨)
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Additive Rules (1/13)

Probability and Statistics



6© Ahmed Hagag

Additive Rules (2/13)

Probability and Statistics
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Additive Rules (3/13)

Probability and Statistics
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Additive Rules (4/13)

Probability and Statistics
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Additive Rules (5/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

1) 𝑃(𝐴′)

2) 𝑃 𝐴 ∪ 𝐵

3) 𝑃(𝐴′ ∩ 𝐵)

4) 𝑃 𝐴 ∪ 𝐵 ′
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Additive Rules (6/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

1) 𝑃 𝐴′ = 1 − 𝑃 𝐴 = 1 − 0.3 = 0.7

2) 𝑃 𝐴 ∪ 𝐵 = 0.3 + 0.2 − 0.1 = 0.4
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Additive Rules (7/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

3) 𝑃 𝐴′ ∩ 𝐵 S

A B
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Additive Rules (7/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

3) 𝑃 𝐴′ ∩ 𝐵 S

A B
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Additive Rules (7/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

3) 𝑃 𝐴′ ∩ 𝐵 S

A B
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Additive Rules (7/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

3) 𝑃 𝐴′ ∩ 𝐵

= 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 = 0.2 − 0.1

= 0.1

S

A B
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Additive Rules (8/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

4) 𝑃 𝐴 ∪ 𝐵 ′
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Additive Rules (8/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

4) 𝑃 𝐴 ∪ 𝐵 ′ = 𝑃 𝐴′ ∩ 𝐵′ S

A B
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Additive Rules (8/13)

Probability and Statistics

Example4:

If 𝑃 𝐴 = 0.3 , 𝑃 𝐵 = 0.2 , 𝑃 𝐴 ∩ 𝐵 = 0.1 determine 

the following probabilities:

4) 𝑃 𝐴 ∪ 𝐵 ′ = 𝑃 𝐴′ ∩ 𝐵′

= 1 − 𝑃 𝐴 ∪ 𝐵 = 1 − 0.4 = 0.6

S

A B
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Additive Rules (9/13)

Probability and Statistics

Example5:

What is the probability of getting a total of 7 or 11 when a 

pair of fair dice is tossed?
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Additive Rules (10/13)

Probability and Statistics

Example5:

What is the probability of getting a total of 7 or 11 when a 

pair of fair dice is tossed?

Solution:

Let 𝐴 be the event that 7 occurs and 𝐵 the event that 11 

comes up.
𝑆 = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51,

52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}
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Additive Rules (11/13)

Probability and Statistics

Example5:

What is the probability of getting a total of 7 or 11 when a 

pair of fair dice is tossed?

Solution:

Let 𝐴 be the event that 7 occurs and 𝐵 the event that 11 

comes up.

𝑃 𝐴 =
6

36

𝑆 = {11, 12, 13, 14, 15, 16 , 21, 22, 23, 24, 25 , 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51,

52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}
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Additive Rules (12/13)

Probability and Statistics

Example5:

What is the probability of getting a total of 7 or 11 when a 

pair of fair dice is tossed?

Solution:

Let 𝐴 be the event that 7 occurs and 𝐵 the event that 11

comes up.

𝑃 𝐵 =
2

36

𝑆 = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51,

52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}
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Additive Rules (13/13)

Probability and Statistics

Example5:

What is the probability of getting a total of 7 or 11 when a 

pair of fair dice is tossed?

Solution:

The probability of getting a total of 7 or 11 = 𝑃(𝐴 ∪ 𝐵)

The events 𝐴 and 𝐵 are mutually exclusive, since a total of 

7 and 11 cannot both occur on the same toss. Therefore,

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 =
6

36
+

2

36
=

8

36
=
2

9
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Conditional Probability (1/31)

Probability and Statistics

Introduction (1/2):

Sometimes probabilities need to be reevaluated as 

additional information becomes available. The probability 

of an event 𝐵 under the knowledge that the outcome will be 

in event 𝐴 is denoted as

𝑃 𝐵 𝐴)

and this is called the conditional probability of 𝐵 given 𝐴.
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Conditional Probability (1/31)

Probability and Statistics

Introduction (2/2):

The conditional probability of 𝐵, given 𝐴, denoted 

by 𝑃 𝐵 𝐴), is defined by

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐴
, provided 𝑃 𝐴 > 0
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Conditional Probability (1/31)

Probability and Statistics

Introduction (2/2):

The conditional probability of 𝐵, given 𝐴, denoted 

by 𝑃 𝐵 𝐴), is defined by

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐴
, provided 𝑃 𝐴 > 0

Equally Likely Outcomes
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Conditional Probability (2/31)

Probability and Statistics

Example1:

As an additional illustration, suppose that our sample space 

𝑆 is the population of adults in a small town who have 

completed the requirements for a college degree.

We shall categorize them according to gender and 

employment status. The data are given in the following.
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Conditional Probability (3/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?
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Conditional Probability (3/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?

𝑃(𝑀|𝐸)
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Conditional Probability (3/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?

𝑃 𝑀 𝐸 =
𝑃 𝑀 ∩ 𝐸

𝑃 𝐸
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Conditional Probability (4/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?

𝑃 𝑀 ∩ 𝐸 =
460

900
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Conditional Probability (5/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?

𝑃 𝐸 =
600

900
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Conditional Probability (5/31)

Probability and Statistics

Example1:

One of these individuals is to be selected at random. What 

is the probability that he is a male and given that he is 

employed?

𝑃 𝑀 𝐸 =
460/900

600/900
=
460

600
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Conditional Probability (6/31)

Probability and Statistics

Example2:

Consider an industrial process in the textile industry in 

which strips of a particular type of cloth are being 

produced. These strips can be defective in two ways, length 

and nature of texture. It is known from historical 

information on the process that 10% of strips fail the length 

test, 5% fail the texture test, and only 0.8% fail both tests. 

If a strip is selected randomly from the process and a quick 

measurement identifies it as failing the length test, what is 

the probability that it is texture defective?



34© Ahmed Hagag

Conditional Probability (7/31)

Probability and Statistics

Example2:

Consider an industrial process in the textile industry in 

which strips of a particular type of cloth are being 

produced. These strips can be defective in two ways, length 

and nature of texture. It is known from historical 

information on the process that 10% of strips fail the length 

test, 5% fail the texture test, and only 0.8% fail both tests. 

If a strip is selected randomly from the process and a quick 

measurement identifies it as failing the length test, what is 

the probability that it is texture defective?
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Conditional Probability (7/31)

Probability and Statistics

Example2:

Consider an industrial process in the textile industry in 

which strips of a particular type of cloth are being 

produced. These strips can be defective in two ways, length 

and nature of texture. It is known from historical 

information on the process that 10% of strips fail the length 

test, 5% fail the texture test, and only 0.8% fail both tests. 

If a strip is selected randomly from the process and a quick 

measurement identifies it as failing the length test, what is 

the probability that it is texture defective?



36© Ahmed Hagag

Conditional Probability (7/31)

Probability and Statistics

Example2:

Consider an industrial process in the textile industry in 

which strips of a particular type of cloth are being 

produced. These strips can be defective in two ways, length 

and nature of texture. It is known from historical 

information on the process that 10% of strips fail the length 

test, 5% fail the texture test, and only 0.8% fail both tests. 

If a strip is selected randomly from the process and a quick 

measurement identifies it as failing the length test, what is 

the probability that it is texture defective?
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Conditional Probability (7/31)

Probability and Statistics

Example2:

Consider an industrial process in the textile industry in 

which strips of a particular type of cloth are being 

produced. These strips can be defective in two ways, length 

and nature of texture. It is known from historical 

information on the process that 10% of strips fail the length 

test, 5% fail the texture test, and only 0.8% fail both tests. 

If a strip is selected randomly from the process and a quick 

measurement identifies it as failing the length test, what is 

the probability that it is texture defective?

𝑃(𝑇|𝐿) = 0.008/0.1 = 0.08
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Conditional Probability (8/31)

Probability and Statistics

Example3:

A dice is rolled twice. What is the probability that the sum 

equal 10, if you know that the 1st element equal 6?
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Conditional Probability (9/31)

Probability and Statistics

Example3:

A dice is rolled twice. What is the probability that the sum 

equal 10, if you know that the 1st element equal 6?

Solution: 𝐴 = 46, 55, 64 , 𝐵 = 61, 62, 63, 64, 65, 66

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
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Conditional Probability (9/31)

Probability and Statistics

Example3:

A dice is rolled twice. What is the probability that the sum 

equal 10, if you know that the 1st element equal 6?

Solution: 𝐴 = 46, 55, 64 , 𝐵 = 61, 62, 63, 64, 65, 66

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵

𝐴 ∩ 𝐵 = 64

𝑃 𝐴 = 3/36
𝑃 𝐵 = 6/36

𝑃 𝐴 ∩ 𝐵 = 1/36
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Conditional Probability (9/31)

Probability and Statistics

Example3:

A dice is rolled twice. What is the probability that the sum 

equal 10, if you know that the 1st element equal 6?

Solution: 𝐴 = 46, 55, 64 , 𝐵 = 61, 62, 63, 64, 65, 66

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
1/36

6/36
= 1/6

𝐴 ∩ 𝐵 = 64

𝑃 𝐴 = 3/36
𝑃 𝐵 = 6/36

𝑃 𝐴 ∩ 𝐵 = 1/36
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Conditional Probability (10/31)

Probability and Statistics

Disjoint (or mutually exclusive):

𝑆 is a sample space, 𝐴, 𝐵 are two events

𝐴, 𝐵 ⊆ 𝑆 and 𝐴, 𝐵 𝐃𝐢𝐬𝐣𝐨𝐢𝐧𝐭 𝑜𝑟 𝐦𝐮𝐭𝐮𝐚𝐥𝐥𝐲 𝐞𝐱𝐜𝐥𝐮𝐬𝐢𝐯𝐞

∴ 𝑃 𝐴 ∩ 𝐵 = 0
∴ 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵

∴ 𝑃 𝐴|𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=

0

𝑃 𝐵
= 0
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Conditional Probability (11/31)

Probability and Statistics

Independence:

𝑆 is a sample space, 𝐴, 𝐵 are two events

𝐴, 𝐵 ⊆ 𝑆 and 𝐴, 𝐵 are 𝐢𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭

∴ 𝑃 𝐴|𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
𝑃 𝐴 ∗ 𝑃 𝐵

𝑃 𝐵
= 𝑃 𝐴

∴ 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ∗ 𝑃 𝐵

∴ 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∗ 𝑃 𝐵
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Conditional Probability (12/31)

Probability and Statistics

Example4:

• If 𝑃 𝐴 = 0.2 , 𝑃 𝐵 = 0.3 determine the following 

probabilities:

If 𝐴, and 𝐵 are disjoint (mutually exclusive)

1) 𝑃 𝐴 ∩ 𝐵
2) 𝑃 𝐴 ∪ 𝐵
3) 𝑃 𝐴 𝐵
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Conditional Probability (13/31)

Probability and Statistics

Example4:

• If 𝑃 𝐴 = 0.2 , 𝑃 𝐵 = 0.3 determine the following 

probabilities:

If 𝐴, and 𝐵 are disjoint (mutually exclusive)

Solution:

𝑃 𝐴 ∩ 𝐵 = 0

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 = 0.2 + 0.3 = 0.5

𝑃 𝐴|𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=

0

𝑃 𝐵
= 0
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Conditional Probability (14/31)

Probability and Statistics

Example5:

• If 𝑃 𝐴 = 0.2 , 𝑃 𝐵 = 0.3 determine the following 

probabilities:

If 𝐴, and 𝐵 are 𝐢𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭

1) 𝑃 𝐴 ∩ 𝐵
2) 𝑃 𝐴 ∪ 𝐵
3) 𝑃 𝐴 𝐵
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Conditional Probability (15/31)

Probability and Statistics

Example5:

• If 𝑃 𝐴 = 0.2 , 𝑃 𝐵 = 0.3 determine the following 

probabilities:

If 𝐴, and 𝐵 are 𝐢𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭

Solution:

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ∗ 𝑃 𝐵 = 0.2 ∗ 03 = 0.06

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 = 0.5 − 0.06 = 0.44

𝑃 𝐴|𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
𝑃 𝐴 ∗ 𝑃 𝐵

𝑃 𝐵
= 𝑃 𝐴 = 0.2
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Conditional Probability (16/31)

Probability and Statistics

Example6:

The following circuit operates only if there is a path of 

functional devices from left to right. The probability that 

each device functions is shown on the graph. Assume that 

devices fail independently. What is the probability that the 

circuit operates?
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Conditional Probability (17/31)

Probability and Statistics

Example6:

The following circuit operates only if there is a path of 

functional devices from left to right. The probability that 

each device functions is shown on the graph. Assume that 

devices fail independently. What is the probability that the 

circuit operates?

Let L and R denote the events that the left and right devices 

operate, respectively.

𝑃(𝐿 ∩ 𝑅) = 𝑃(𝐿)𝑃(𝑅) = 0.80(0.90) = 0.72
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Conditional Probability (18/31)

Probability and Statistics

Example7:

The following circuit operates only if there is a path of 

functional devices from left to right. The probability that 

each device functions is shown on the graph. Assume that 

devices fail independently. What is the probability that the 

circuit operates?
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Conditional Probability (19/31)

Probability and Statistics

Example7:

What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom 

devices operate, respectively.

𝑃 𝑇 ∪ 𝐵 = 𝑃 𝑇 + 𝑃 𝐵 − 𝑃 𝑇 𝑃 𝐵

= 0.95 + 0.90 − 0.95 0.90 = 0.995
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Conditional Probability (20/31)

Probability and Statistics

Example7:

What is the probability that the circuit operates?

𝑃 𝑇 ∪ 𝐵 = 1 − 𝑃 𝑇 ∪ 𝐵 ′

= 1 − 𝑃 𝑇′ ∩ 𝐵′ = 1 − 𝑃 𝑇′ 𝑃 𝐵′

= 1 − 0.05 0.10 = 0.995

Another Solution
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Conditional Probability (21/31)

Probability and Statistics

Example8:

The following circuit operates only if there is a path of 

functional devices from left to right. The probability that 

each device functions is shown on the graph. Assume that 

devices fail independently. What is the probability that the 

circuit operates?
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Conditional Probability (22/31)

Probability and Statistics

Example8:

= 1 − 0.10 0.10 0.10 = 0.999
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Conditional Probability (23/31)

Probability and Statistics

Example8:

= 1 − 0.05 0.05 = 0.9975
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Conditional Probability (24/31)

Probability and Statistics

Example8:

0.9975
0.999

= 0.999 0.9975 0.99 = 0.9865
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Conditional Probability (25/31)

Probability and Statistics

Multiplication Rule:

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
, 𝑓𝑜𝑟 𝑃 𝐵 > 0

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐴
, 𝑓𝑜𝑟 𝑃 𝐴 > 0

𝑷 𝑨 ∩ 𝑩 = 𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑩 𝑨 𝑷 𝑨
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Conditional Probability (26/31)

Probability and Statistics

Example9:

One bag contains 4 white balls and 3 black balls, and a 

second bag contains 3 white balls and 5 black balls. One 

ball is drawn from the first bag and placed unseen in the 

second bag. What is the probability that a ball now drawn 

from the second bag is black?
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Conditional Probability (27/31)

Probability and Statistics

Example9:

One bag contains 4 white balls and 3 black balls, and a 

second bag contains 3 white balls and 5 black balls. One 

ball is drawn from the first bag and placed unseen in the 

second bag. What is the probability that a ball now drawn 

from the second bag is black?

Solution:

𝐵1: Black from bag#1

𝑊1: White from bag#1

𝐵2: Black from bag#2

𝑊2: White from bag#2

Bag#1 Bag#2
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Conditional Probability (27/31)

Probability and Statistics

Example9:

One bag contains 4 white balls and 3 black balls, and a 

second bag contains 3 white balls and 5 black balls. One 

ball is drawn from the first bag and placed unseen in the 

second bag. What is the probability that a ball now drawn 

from the second bag is black?

Solution:

𝐵1: Black from bag#1

𝑊1: White from bag#1

𝐵2: Black from bag#2

𝑊2: White from bag#2

Bag#1 Bag#2

𝐵1 and 𝐵2 𝑊1 and 𝐵2or
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Conditional Probability (28/31)

Probability and Statistics

Example9:

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 𝑃 𝐵1 =
6

9

3

7

Bag#1 Bag#2

𝐵1 and 𝐵2 𝑊1 and 𝐵2or
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Conditional Probability (29/31)

Probability and Statistics

Example9:

𝑃 𝑊1 ∩ 𝐵2 = 𝑃 𝐵2 𝑊1 𝑃 𝑊1 =
5

9

4

7

Bag#1 Bag#2

𝐵1 and 𝐵2 𝑊1 and 𝐵2or
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Conditional Probability (30/31)

Probability and Statistics

Example9:

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 𝑃 𝐵1 =
6

9

3

7

𝑃 𝑊1 ∩ 𝐵2 = 𝑃 𝐵2 𝑊1 𝑃 𝑊1 =
5

9

4

7

What is the probability that a ball now drawn from the 

second bag is black = 
6

9

3

7
+

5

9

4

7
=

38

63

𝐵1 and 𝐵2 𝑊1 and 𝐵2or Disjoint
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Conditional Probability (31/31)

Probability and Statistics

Example9: 𝐵1 and 𝐵2 𝑊1 and 𝐵2or Disjoint

5
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Total Probability Rule (1/10)

Probability and Statistics

Total Probability Rule:

𝑷 𝑨 = 𝑷 𝑬 ∩ 𝑨 ∪ 𝑷 𝑬′ ∩ 𝑨

= 𝑷 𝑬 ∩ 𝑨 + 𝑷 𝑬′ ∩ 𝑨

= 𝑷 𝑨 𝑬 𝑷 𝑬 + 𝑷 𝑨 𝑬′ 𝑷 𝑬′
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Total Probability Rule (2/10)

Probability and Statistics

Example10:

Consider the information about contamination in the 

following table.

Let F denote the event that the product fails, and let H

denote the event that the chip is exposed to high levels of

contamination.

𝑃 𝐹 𝐻 = 0.1

𝑃 𝐹 𝐻′ = 0.005

𝑃(𝐻) = 0.2

𝑃(𝐻′) = 0.8

𝑃 𝐹 ?
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Total Probability Rule (3/10)

Probability and Statistics

Example10:

Consider the information about contamination in the 

following table.

𝑃 𝐹 = 𝑃 𝐹 𝐻 𝑃 𝐻 + 𝑃 𝐹 𝐻′ 𝑃 𝐻′

= 0.1 0.2 + 0.005 0.8 = 0.024

𝑃 𝐹 𝐻 = 0.1

𝑃 𝐹 𝐻′ = 0.005

𝑃(𝐻) = 0.2

𝑃(𝐻′) = 0.8

𝑃 𝐹 ?



68© Ahmed Hagag

Total Probability Rule (4/10)

Probability and Statistics

Total Probability Rule (Multiple Events):

𝑃(𝐵) = 𝑃(𝐵 ∩ 𝐸1) + 𝑃(𝐵 ∩ 𝐸2) + 𝑃(𝐵 ∩ 𝐸3) + 𝑃(𝐵 ∩ 𝐸4)



69© Ahmed Hagag

Total Probability Rule (5/10)

Probability and Statistics

Example11:

In a certain assembly plant, three machines, 𝐵1, 𝐵2, and 𝐵3, 

make 30%, 45%, and 25%, respectively, of the products. It 

is known from past experience that 2%, 3%, and 2% of the 

products made by each machine, respectively, are 

defective. Now, suppose that a finished product is 

randomly selected. What is the probability that it is 

defective?
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Total Probability Rule (5/10)

Probability and Statistics

Example11:

In a certain assembly plant, three machines, 𝐵1, 𝐵2, and 𝐵3, 

make 30%, 45%, and 25%, respectively, of the products. It 

is known from past experience that 2%, 3%, and 2% of the 

products made by each machine, respectively, are 

defective. Now, suppose that a finished product is 

randomly selected. What is the probability that it is 

defective?

𝑫: the product is defective.   Find  𝑷(𝑫) ?
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Total Probability Rule (6/10)

Probability and Statistics

Example11:

In a certain assembly plant, three machines, 𝐵1, 𝐵2, and 𝐵3, 

make 30%, 45%, and 25%, respectively, of the products. It 

is known from past experience that 2%, 3%, and 2% of the 

products made by each machine, respectively, are 

defective. Now, suppose that a finished product is 

randomly selected. What is the probability that it is 

defective?

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.
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Total Probability Rule (7/10)

Probability and Statistics

Example11:

Applying the total probability rule , we can write

𝑃 𝐷

= 𝑃 𝐷 𝐵1 𝑃 𝐵1 + 𝑃 𝐷 𝐵2 𝑃 𝐵2 + 𝑃 𝐷 𝐵3 𝑃(𝐵3)

= 0.02 0.3 + 0.03 0.45 + 0.02 0.25 = 0.0245

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.
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Total Probability Rule (8/10)

Probability and Statistics

Example12:

Box#1 contains 2 red balls and 3 blue balls; Box#2 

contains 5 red balls and 2 blue balls. If the selection of two 

boxes is equally likely, and you selected one ball, what is 

the probability that it is red?
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Total Probability Rule (8/10)

Probability and Statistics

Example12:

Box#1 contains 2 red balls and 3 blue balls; Box#2 

contains 5 red balls and 2 blue balls. If the selection of two 

boxes is equally likely, and you selected one ball, what is 

the probability that it is red?
Box#1 Box#2
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Total Probability Rule (9/10)

Probability and Statistics

Example12:

Box#1 contains 2 red balls and 3 blue balls; Box#2 

contains 5 red balls and 2 blue balls. If the selection of two 

boxes is equally likely, and you selected one ball, what is 

the probability that it is red?

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

Find 𝑃(𝑅) ?

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Total Probability Rule (10/10)

Probability and Statistics

Example12:

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

𝑃 𝑅 𝐵1 = ൗ2 5 = 0.4

𝑃 𝑅 𝐵2 = ൗ5 7 = 0.7143

𝑃 𝑅 = 𝑃 𝑅 𝐵1 𝑃 𝐵1 + 𝑃 𝑅 𝐵2 𝑃 𝐵2

𝑃 𝑅 = 0.4 0.5 + 0.7143 0.5 = 0.55715

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (1/11)

Probability and Statistics

From the definition of conditional probability,

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)

Now, considering the second and last terms in the 

preceding expression, we can write
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Bayes’ Rule (2/11)

Probability and Statistics

If 𝐸1, 𝐸2, … , 𝐸𝑘 are 𝑘 mutually exclusive and exhaustive 

events and 𝐵 is any event,
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Bayes’ Rule (3/11)

Probability and Statistics

Example1:

Box#1 contains 2 red balls and 3 blue balls; Box#2 

contains 5 red balls and 2 blue balls. If the selection of two 

boxes is equally likely, and the selected ball was red, what 

is the probability that it is from Box#1?

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

Find 𝑷(𝑩𝟏|𝑹) ?

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (4/11)

Probability and Statistics

Example1:

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

𝑃 𝑅 𝐵1 = ൗ2 5 = 0.4

𝑃 𝑅 𝐵2 = ൗ5 7 = 0.7143

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (5/11)

Probability and Statistics

Example1:

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

𝑃 𝑅 𝐵1 = ൗ2 5 = 0.4

𝑃 𝑅 𝐵2 = ൗ5 7 = 0.7143

𝑃 𝐵1 𝑅 =
𝑃 𝑅 𝐵1 𝑃 𝐵1

𝑃 𝑅
=

0.4 0.5

𝑃 𝑅

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (6/11)

Probability and Statistics

Example1:

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

𝑃 𝑅 𝐵1 = ൗ2 5 = 0.4

𝑃 𝑅 𝐵2 = ൗ5 7 = 0.7143

𝑃 𝐵1 𝑅 =
𝑃 𝑅 𝐵1 𝑃 𝐵1

𝑃 𝑅
=

0.4 0.5

𝑃 𝑅

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (7/11)

Probability and Statistics

Example1:

𝑃 𝐵1 = 𝑃 𝐵2 = 0.5

𝑅: 𝑟𝑒𝑎𝑑, 𝐵: 𝑏𝑙𝑢𝑒

𝑃 𝑅 𝐵1 = ൗ2 5 = 0.4

𝑃 𝑅 𝐵2 = ൗ5 7 = 0.7143

𝑃 𝐵1 𝑅 =
𝑃 𝑅 𝐵1 𝑃 𝐵1

𝑃 𝑅
=

0.4 0.5

𝑃 𝑅
=

0.2

0.55715
= 0.35897

Box#1 (𝑩𝟏) Box#2 (𝑩𝟐)
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Bayes’ Rule (8/11)

Probability and Statistics

Example2:

In a certain assembly plant, three machines, 𝐵1, 𝐵2, and 𝐵3, 

make 30%, 45%, and 25%, respectively, of the products. It 

is known from past experience that 2%, 3%, and 2% of the 

products made by each machine, respectively, are 

defective. If a product was chosen randomly and found to 

be defective, what is the probability that it was made by 

machine 𝐵3?

𝑫: the product is defective.   Find  𝑷(𝑩𝟑|𝑫) ?
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Bayes’ Rule (8/11)

Probability and Statistics

Example2:

In a certain assembly plant, three machines, 𝐵1, 𝐵2, and 𝐵3, 

make 30%, 45%, and 25%, respectively, of the products. It 

is known from past experience that 2%, 3%, and 2% of the 

products made by each machine, respectively, are 

defective. If a product was chosen randomly and found to 

be defective, what is the probability that it was made by 

machine 𝐵3?

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.
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Bayes’ Rule (9/11)

Probability and Statistics

Example2:

Using Bayes’ rule to write

𝑃 𝐵3|𝐷 =
𝑃 𝐷 𝐵3 𝑃 𝐵3

𝑃 𝐷

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.
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Bayes’ Rule (10/11)

Probability and Statistics

Example2:

Using Bayes’ rule to write

𝑃 𝐵3|𝐷 =
𝑃 𝐷 𝐵3 𝑃 𝐵3

𝑃 𝐷

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.
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Bayes’ Rule (11/11)

Probability and Statistics

Example2:

Using Bayes’ rule to write

𝑃 𝐵3|𝐷 =
𝑃 𝐷 𝐵3 𝑃 𝐵3

0.0245
=

0.02 0.25

0.0245
= 0.2041

𝑃 𝐵1 = 0.3, 𝑃 𝐵2 = 0.45, 𝑃 𝐵3 = 0.25

𝑃 𝐷|𝐵1 = 0.02,
𝑃 𝐷|𝐵2 = 0.03,
𝑃 𝐷|𝐵3 = 0.02.



Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-All Lectures: 

Lecture #3:  https://www.youtube.com/watch?v=raeVQxzY7iE&list=PLxIvc-

MGOs6gW9SgkmoxE5w9vQkID1_r-&index=3

89© Ahmed Hagag Probability and Statistics

https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-

MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4 Up to time 00:41:39

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-
https://www.youtube.com/watch?v=raeVQxzY7iE&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=3
https://www.youtube.com/watch?v=raeVQxzY7iE&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=3
https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4
https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg
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